BLALC Volatiles QA_QC Data Spreadsheet-v5.xls

John Garner at 10:19 am, Sep 10, 2020

Quantitative Analysis for Ethanol & Qualitative Analysis for Other Volatiles

Analytical Method(s): 1.0

Device: Hamilton MICROLAB Liquid Processor/Dilutor | Serial Number: ML600HC11378

Volatiles Quality Assurance Controls Run Date(s): 9/9/20 - 9/10/20; calibration 9/3/20

By John Garner at 10:									
	Multi-Component mixture:		Level 2			Level 1		Control level	
Curve Fit:	nent mixture:	Mar-22				Jul-23		Expiration	
			1803028			1907006		Lot#	
Column 1			0.2035			0.0764		Target Value	
0.99998	Lot#		35			64			
	FN07101701		0.1832-0.2238			0.0688-0.0840		Acceptable	
Column2	701		2238			0840		Range	
0.99989	acceptable	g/100cc	0.2019 g/100cc	0.2010 g/100cc	g/100cc	0.0767 g/100cc	0.0744 g/100cc	Acceptable Range Overall Results	

Ethanol Calibrator level	Ethanol Calibration Keterence Material or level Target Value	Acceptable Range	de Range		ole Range Column 1 Column 2 Precision
50	0.050	0.045 - 0.055		0.0509	0.0509 0.0529
100	0.100	0.090 - 0.110		0.0998	0.0998 0.0997
200	0.200	0.180 - 0.220	0	0.1999) (
300	0.300	0.270 - 0.330	0	0.2984	
400	0.400	0.360 - 0.440	0	0	0
 500	0.500	0.450 - 0.550)	0.5009	0
	And the second s	Control of the Contro			

Revision: 2

Page: 1 of 1

Control level

Aqueous Controls

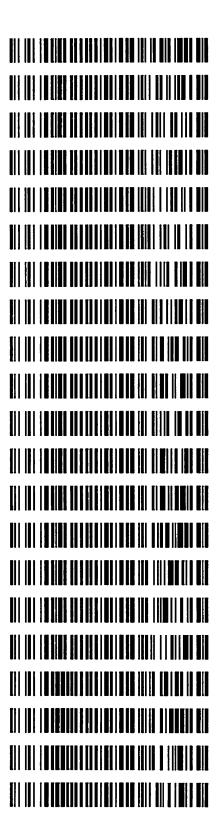
Target Value

Acceptable Range

Overall Results

0.076 - 0.084

0.081


g/100cc

0.080

80

Worklist: 4502

LAB CASE	<u>ITEM</u>	ITEM TYPE	DESCRIPTION
M2020-3076	3	вск	Alcohol Analysis
M2020-3401	1	вск	Alcohol Analysis
M2020-3422	1	вск	Alcohol Analysis
M2020-3423	1	вск	Alcohol Analysis
M2020-3434	1	вск	Alcohol Analysis
M2020-3435	1	вск	Alcohol Analysis
M2020-3450	1	вск	Alcohol Analysis
M2020-3482	1	вск	Alcohol Analysis
M2020-3491	1	вск	Alcohol Analysis
M2020-3491	3	вск	Alcohol Analysis
M2020-3491	5	вск	Alcohol Analysis
M2020-3495	1	вск	Alcohol Analysis
M2020-3496	1	вск	Alcohol Analysis
M2020-3498	1	вск	Alcohol Analysis
M2020-3514	1	вск	Alcohol Analysis
M2020-3515	1	вск	Alcohol Analysis
M2020-3518	1	вск	Alcohol Analysis
P2020-2620	2	вск	Alcohol Analysis
P2020-2628	1	вск	Alcohol Analysis
P2020-2634	1	вск	Alcohol Analysis
P2020-2642	1	вск	Alcohol Analysis

Worklist: 4502

LAB CASE	<u>ITEM</u>	ITEM TYPE	DESCRIPTION
P2020-2657	1	вск	Alcohol Analysis
P2020-2660	1	BCK	Alcohol Analysis

VOLATILES DETERMINATION CASEFILE WORKSHEET

Laboratory No.: QC1-1 Analysis Date(s): 09 Sep 2020

	Column 1 FID A	Column 2 FID B	Column Precision	Mean Value	Sample A-B Difference	Over-all Mean
Sample Results	0.0740	0.0745	0.0005	0.0742	0.0004	0.0744
(g/100cc)	0.0743	0.0749	0.0006	0.0746	0.0004	0.0744

Analysis Method

Refer to Blood Alcohol Method #1

Instrument Information

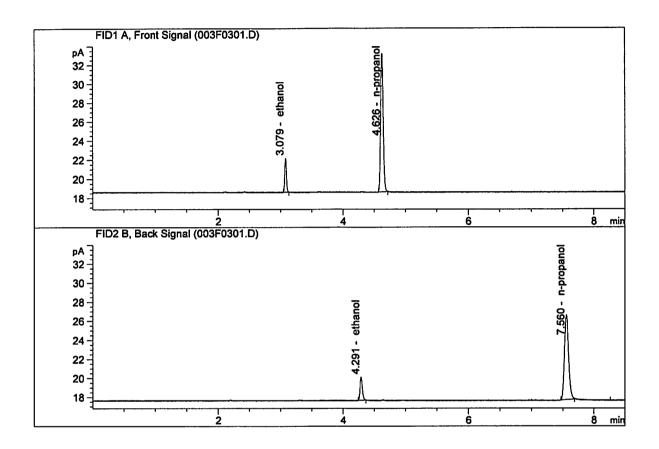
Instrument information is stored centrally.

Refer to Instrument Method: Alcohol.m

Reporting of Results	Uncertainty of Measurement (UM%): 5.00%			
Overall Mean (g/100cc)	Low	High	5% of Mean	
0.074	0.070	0.078	0.004	

Reported Result	
0.074	

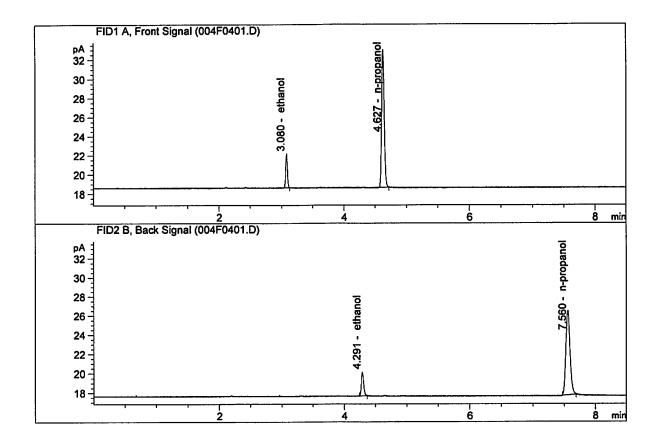
Page: 1 of 1


Calibration and control data are stored centrally.

B

Revision: 2

Issue Date: 12/23/2019
Issuing Authority: Quality Manager


Sample Name : QC1-1-A
Laboratory : Meridian
Injection Date : Sep 9, 2020
Method : ALCOHOL.M

#	Compound	Column	Area	Amount	Units
1.	Ethanol	Column 1:	6.54309	0.0740	g/100cc
2.	Ethanol	Column 2:	6.68103	0.0745	g/100cc
3.	n-Propanol	Column 1:	41.56831	1.0000	g/100cc
4.	n-Propanol	Column 2:	42.69632	1.0000	g/100cc

Sample Name : QC1-1-B
Laboratory : Meridian
Injection Date : Sep 9, 2020
Method : ALCOHOL.M

#	Compound	Column	Area	Amount	Units
	Ethanol	Column 1:	6.48108	0.0743	g/100cc
2.	Ethanol	Column 2:	6.61871	0.0749	g/100cc
3.	n-Propanol	Column 1:	41.02126	1.0000	g/100cc
4.	n-Propanol	Column 2:	42.03209	1.0000	g/100cc

VOLATILES DETERMINATION CASEFILE WORKSHEET

Laboratory No.: QC1-2 Analysis Date(s): 10 Sep 2020

	Column 1 FID A	Column 2 FID B	Column Precision	Mean Value	Sample A-B Difference	Over-all Mean
Sample Results	0.0767	0.0773	0.0006	0.0770	0.0005	0.0767
(g/100cc)	0.0761	0.0769	0.0008	0.0765	0.0003	0.0707

Analysis Method

Refer to Blood Alcohol Method #1

Instrument Information

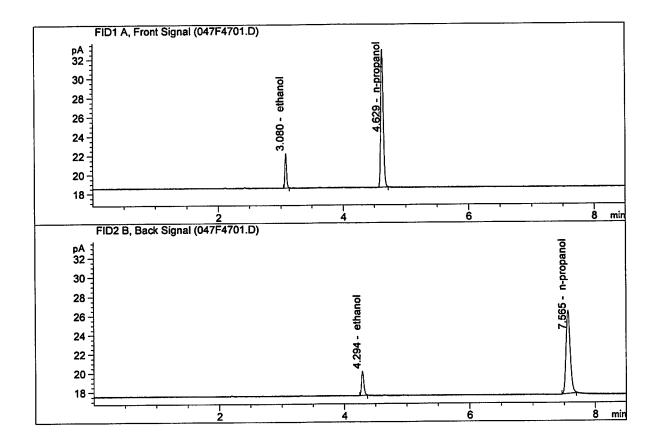
Instrument information is stored centrally.

Refer to Instrument Method: Alcohol.m

Reporting of Results	Uncertainty of Measurement (UM%): 5.00%			
Overall Mean (g/100cc)	Low	High	5% of Mean	
0.076	0.072	0.080	0.004	

Reported Result	
0.076	

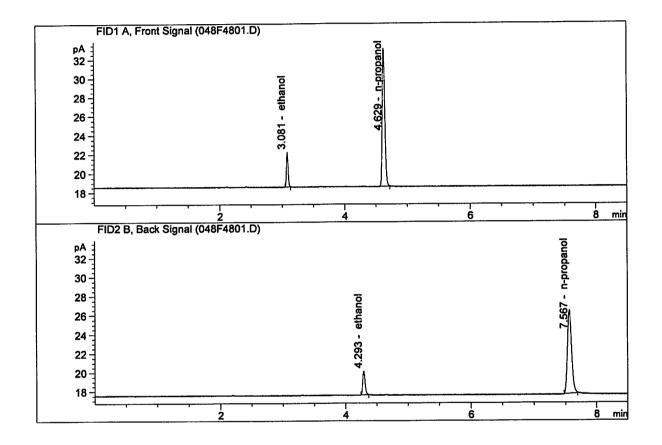
Page: 1 of 1


Calibration and control data are stored centrally.

Revision: 2

Issue Date: 12/23/2019

Issuing Authority: Quality Manager


Sample Name : QC1-2-A
Laboratory : Meridian
Injection Date : Sep 10, 2020
Method : ALCOHOL.M

#	Compound	Column	Area	Amount	Units
2.	Ethanol Ethanol n-Propanol n-Propanol	Column 1: Column 2: Column 1: Column 2:	6.69258 6.81630 40.98643 41.84310	0.0767 0.0773 1.0000	g/100cc g/100cc g/100cc g/100cc

Sample Name : QC1-2-B
Laboratory : Meridian
Injection Date : Sep 10, 2020
Method : ALCOHOL.M

#	Compound	Column	Area	Amount	Units
1.	Ethanol	Column 1:	6.70136	0.0761	g/100cc
2.	Ethanol	Column 2:	6.82137	0.0769	g/100cc
3.	n-Propanol	Column 1:	41.39740	1.0000	g/100cc
4.	n-Propanol	Column 2:	42.11788	1.0000	g/100cc

VOLATILES DETERMINATION CASEFILE WORKSHEET

Laboratory No.: QC2-2 Analysis Date(s): 10 Sep 2020

	Column 1 FID A	Column 2 FID B	Column Precision	Mean Value	Sample A-B Difference	Over-all Mean
Sample Results	0.2015	0.2016	0.0001	0.2015	0.0008	0.2019
(g/100cc)	0.2028	0.2019	0.0009	0.2023		

Analysis Method

Refer to Blood Alcohol Method #1

Instrument Information

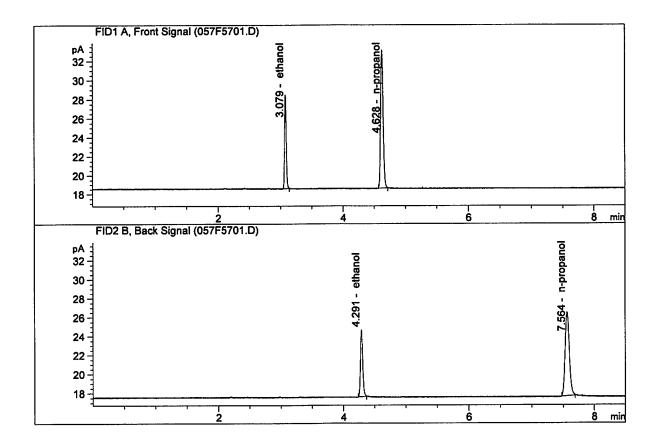
Instrument information is stored centrally.

Refer to Instrument Method: Alcohol.m

Reporting of Results	Uncertainty of Measurement (UM%): 5.00%			
Overall Mean (g/100cc)	Low	High	5% of Mean	
0.201	0.190	0.212	0.011	

Reported Result	
0.201	

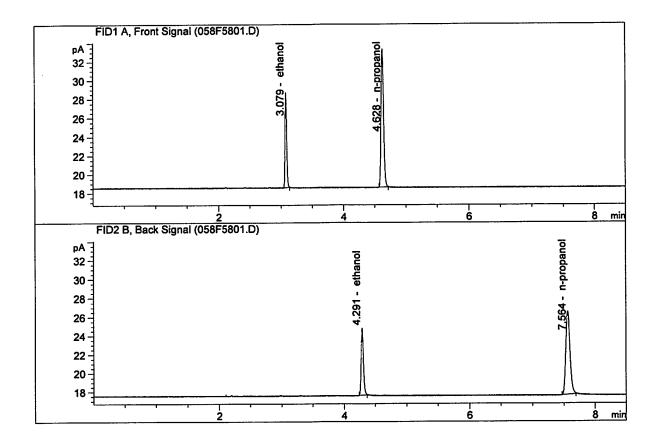
Page: 1 of 1


Calibration and control data are stored centrally.

B

Revision: 2

Issue Date: 12/23/2019
Issuing Authority: Quality Manager


Sample Name : QC2-2-A
Laboratory : Meridian
Injection Date : Sep 10, 2020
Method : ALCOHOL.M

#	Compound	Column	Area	Amount	Units
	Ethanol	Column 1:	18.10900 18.82759	0.2015 0.2016	g/100cc g/100cc
	Ethanol n-Propanol	Column 2: Column 1:	41.40593	1.0000	g/100cc
4.	n-Propanol	Column 2:	42.12537	1.0000	g/100cc

Sample Name : QC2-2-B
Laboratory : Meridian
Injection Date : Sep 10, 2020
Method : ALCOHOL.M

# Com	pound	Column	Area	Amount	Units
	anol ropanol	Column 2:		0.2028 0.2019 1.0000 1.0000	g/100cc g/100cc g/100cc g/100cc

VOLATILES DETERMINATION CASEFILE WORKSHEET

Laboratory No.: QC2-1 Analysis Date(s): 09 Sep 2020

	Column 1 FID A	Column 2 FID B	Column Precision	Mean Value	Sample A-B Difference	Over-all Mean
Sample Results	0.2019	0.2021	0.0002	0.2020	0.0020	0.2010
(g/100ce)	0.2003	0.1997	0.0006	0.2000	0.0020	

Analysis Method

Refer to Blood Alcohol Method #1

Instrument Information

Instrument information is stored centrally.

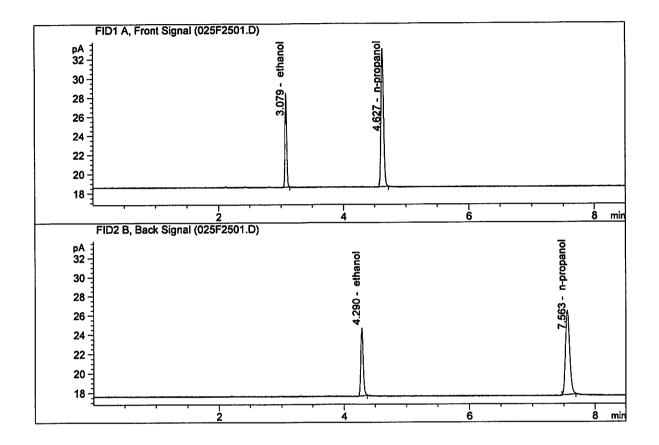
Refer to Instrument Method: Alcohol.m

Reporting of Results	Uncertainty of Measurement (UM%): 5.00%			
Overall Mean (g/100cc)	Low	High	5% of Mean	
0.201	0.190	0.212	0.011	

Reported Result	
0.201	

Page: 1 of 1

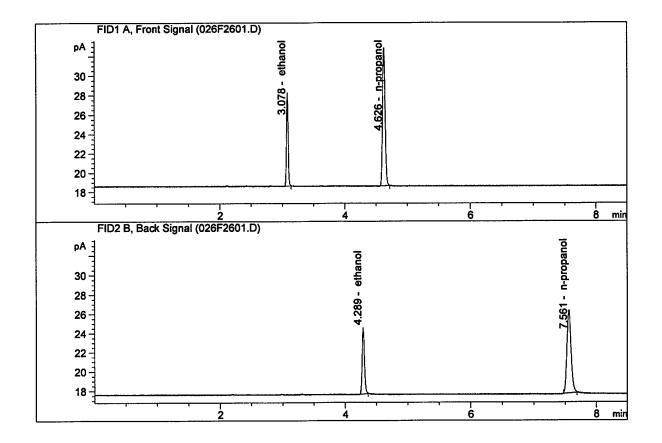
Calibration and control data are stored centrally.


B

Revision: 2

Issue Date: 12/23/2019

Issuing Authority: Quality Manager


Sample Name : QC2-1-A
Laboratory : Meridian
Injection Date : Sep 9, 2020
Method : ALCOHOL.M

#	Compound	Column	Area	Amount	Units
1.	Ethanol	Column 1:	17.93685	0.2019	g/100cc
2.	Ethanol	Column 2:	18.64647	0.2021	g/100cc
3.	n-Propanol	Column 1:	40.93648	1.0000	g/100cc
4.	n-Propanol	Column 2:	41.61352	1.0000	g/100cc

Sample Name : QC2-1-B
Laboratory : Meridian
Injection Date : Sep 9, 2020
Method : ALCOHOL.M

#	Compound	Column	Area	Amount	Units	
1.	Ethanol	Column 1:	17.65041	0.2003	g/100cc	
2.	Ethanol	Column 2:	18.26642	0.1997	g/100cc	
3.	n-Propanol	Column 1:	40.59982	1.0000	g/100cc	
4.	n-Propanol	Column 2:	41.26793	1.0000	g/100cc	

VOLATILES DETERMINATION CASEFILE WORKSHEET

Laboratory No.: 0.08 FN04171701 Analysis Date(s): 09 Sep 2020

	Column 1 FID A	Column 2 FID B	Column Precision	Mean Value	Sample A-B Difference	Over-all Mean
Sample Results	0.0815	0.0821	0.0006	0.0818	0.0007	0.0814
(g/100cc)	0.0807	0.0815	0.0008	0.0811	0.0007	0.0014

Analysis Method

Refer to Blood Alcohol Method #1

Instrument Information

Instrument information is stored centrally.

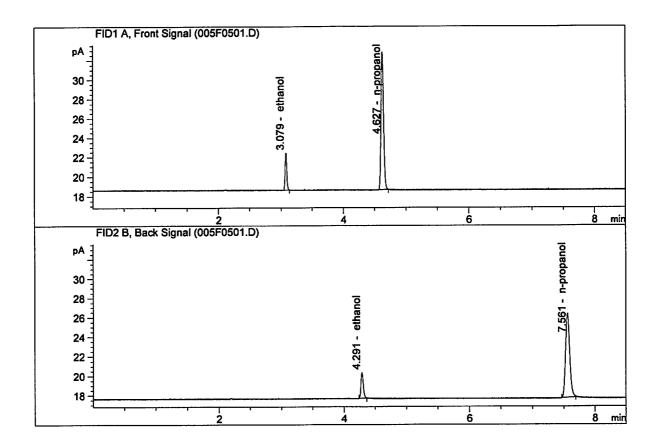
Refer to Instrument Method: Alcohol.m

Reporting of Results	Uncertainty of Measurement (UM%): 5.00%			
Overall Mean (g/100cc)	Low	High	5% of Mean	
0.081	0.076	0.086	0.005	

Reported Result	
0.081	

Page: 1 of 1

Calibration and control data are stored centrally.

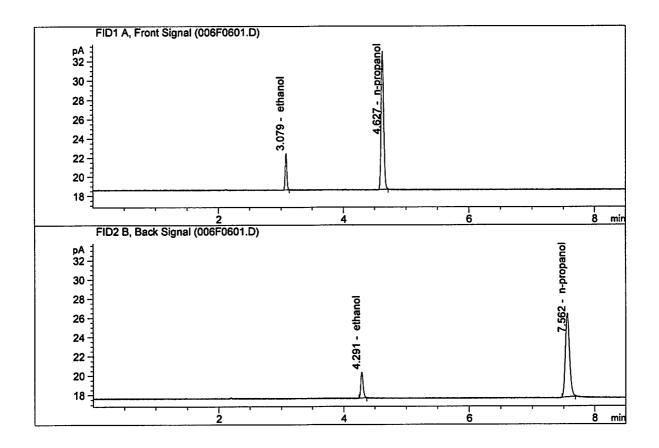

Revision: 2

Issue Date: 12/23/2019
Issuing Authority: Quality Manager

Volatiles Determination Casefile Worksheet

Sample Name : 0.08 FN04171701-A

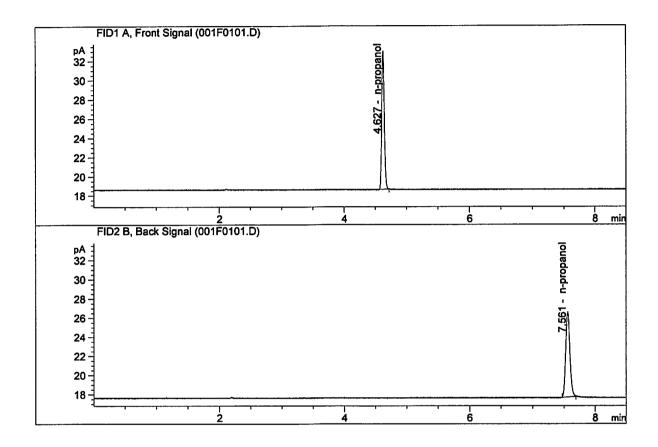
Laboratory : Meridian
Injection Date : Sep 9, 2020
Method : ALCOHOL.M



#	Compound	Column	Area	Amount	Units
2.	Ethanol	Column 1:	7.02774	0.0815	g/100cc
	Ethanol	Column 2:	7.18386	0.0821	g/100cc
	n-Propanol	Column 1:	40.44090	1.0000	g/100cc
	n-Propanol	Column 2:	41.32944	1.0000	g/100cc

Sample Name : 0.08 FN04171701-B

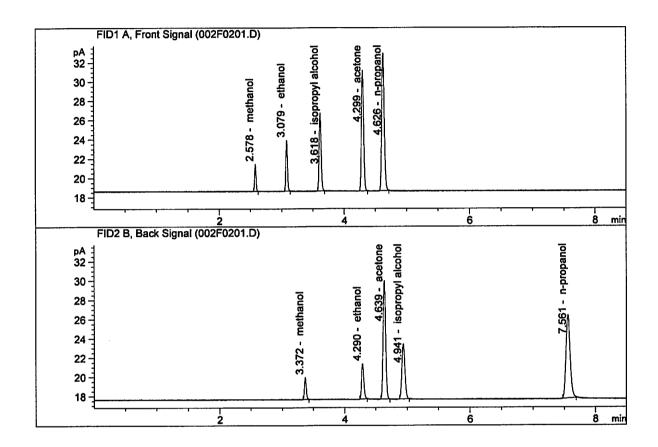
Laboratory : Meridian
Injection Date : Sep 9, 2020
Method : ALCOHOL.M



#	Compound	Column	Area	Amount	Units
1.	Ethanol	Column 1:	7.02702	0.0807	g/100cc
2.	Ethanol	Column 2:	7.21064	0.0815	g/100cc
З.	n-Propanol	Column 1:	40.85723	1.0000	g/100cc
4.	n-Propanol	Column 2:	41.76915	1.0000	g/100cc

Sample Name : INTERNAL STD BLK 1

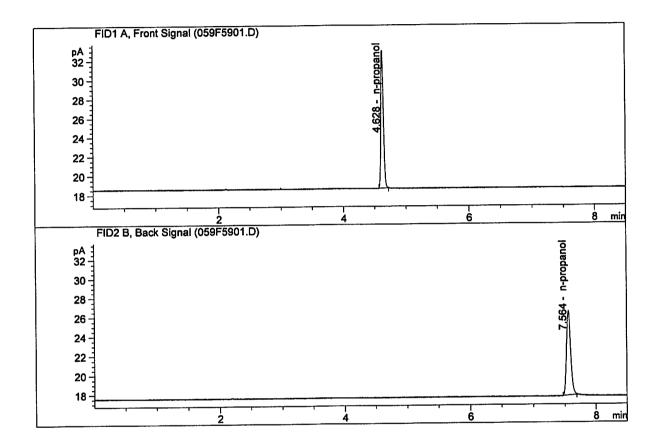
Laboratory : Meridian
Injection Date : Sep 9, 2020
Method : ALCOHOL.M



#	Compound	Column	Area	Amount	Units
1.	Ethanol	Column 1:	0.00000	0.0000	g/100cc
2.	Ethanol	Column 2:	0.00000	0.0000	g/100cc
3.	n-Propanol	Column 1:	41.00659	1.0000	g/100cc
4.	n-Propanol	Column 2:	42.56503	1.0000	g/100cc

Sample Name : MIX VOL FN07101701

Laboratory : Meridian
Injection Date : Sep 9, 2020
Method : ALCOHOL.M



#	Compound	Column	Area	Amount	Units
2.	Ethanol Ethanol n-Propanol n-Propanol	Column 1: Column 2: Column 1: Column 2:	9.51067 9.77842 40.49054 41.53765	0.1093 0.1090 1.0000 1.0000	g/100cc g/100cc g/100cc g/100cc

Sample Name : INTERNAL STD BLK

Laboratory : Meridian
Injection Date : Sep 10, 2020
Method : ALCOHOL.M

#	Compound	Column	Area	Amount	Units
2.	Ethanol Ethanol n-Propanol n-Propanol	Column 1: Column 2: Column 1: Column 2:	0.00000 0.00000 40.90825 41.57731	0.0000 0.0000 1.0000	g/100cc g/100cc g/100cc g/100cc

Sample Summary

Sequence table: C:\Chem32\1\Data\09-09-20_SAMPLES\09-09-20_SAMPLES 2020-09-09 16-25-29\09

09-20 SAMPLES.S

Data directory path: C:\Chem32\1\Data\09-09-20_SAMPLES\09-09-20_SAMPLES 2020-09-09 16-25-29\
Logbook: C:\Chem32\1\Data\09-09-20_SAMPLES\09-09-20_SAMPLES 2020-09-09 16-25-29\09

09-20_SAMPLES.LOG

Sequence start: 9/9/2020 4:40:18 PM

Sequence Operator: SYSTEM Operator: SYSTEM

Method file name: C:\Chem32\1\Data\09-09-20_SAMPLES\09-09-20_SAMPLES 2020-09-09 16-25-29

\ALCOHOL.M

±	ŧ		#	Sample Name	[q/100c	cl	Dilution				# Cmp	
	I	1	I									
	1		1	INTERNAL STD BLK	-	•	1.0000	001F0101	.D	•	2	
	2			MIX VOL FN071017			1.0000	002F0201	.D		10	
	3			QC1-1-A	-		1.0000	003F0301	.D		4	
	4			QC1-1-B	_		1.0000	004F0401	.D		4	
	5			0.08 FN04171701-	-		1.0000	005F0501	.D		4	
	6			0.08 FN04171701-			1.0000	006F0601	.D		4	
	7			M2020-3076-3-A			1.0000	007F0701	.D		2	
	8			M2020-3076-3-B			1.0000	008F0801	.D		2	
	9			M2020-3401-1-A			1.0000	009F0901	.D		4	
		10		M2020-3401-1-B			1.0000	010F1001	.D		4	
		11		M2020-3422-1-A			1.0000	011F1101	.D		4	
		12	1	M2020-3422-1-B	-		1.0000	012F1201	.D		4	
		13		M2020-3423-1-A			1.0000	013F1301	.D		4	
		14	1	M2020-3423-1-B	-		1.0000	014F1401	.D		4	
		15	1	M2020-3434-1-A	-		1.0000	015F1501	.D		6	
		16	1	M2020-3434-1-B	-		1.0000	016F1601	.D		6	
		17	1	M2020-3435-1-A	-		1.0000	017F1701	.D		4	
		18	1	M2020-3435-1-B	-		1.0000	018F1801	.D		4	
		19		M2020-3450-1-A			1.0000	019F1901	.D		4	
		20	1	M2020-3450-1-B	-		1.0000	020F2001	.D		4	
		21	1	M2020-3482-1-A	-		1.0000	021F2101	.D		4	
	22	22	1	M2020-3482-1-B	-		1.0000	022F2201	.D		4	
		23	1	M2020-3491-1-A	-		1.0000	023F2301	.D		2	
	24	24		M2020-3491-1-B			1.0000	024F2401	.D		2	
	25	25	1	QC2-1-A	-		1.0000	025F2501	.D		4	
	26	26	1	QC2-1-B	-		1.0000	026F2601	.D		4	
:	27	27	1	M2020-3491-3-A	-		1.0000	027F2701	.D		2	
		28	1	M2020-3491-3-B	_		1.0000	028F2801	.D		2	
:	29	29	1	M2020-3491-5-A	-		1.0000	029F2901	.D		2	
		30	1	M2020-3491-5-B	-		1.0000	030F3001	.D		2	
	31	31	1	M2020-3495-1-A	-		1.0000	031F3101	.D		4	
	32	32	1	M2020-3495-1-B	-			032F3201			4	
	33	33	1	M2020-3496-1-A	-			033F3301			4	
	34	34	1	M2020-3496-1-B	-			034F3401			4	
	35	35	1	M2020-3498-1A	-		1.0000	035F3501	.D		4	
	36	36	1	M2020-3498-1-B	-		1.0000	036F3601	.D		4	
	37	37	1	M2020-3514-1-A		O		037F3701			4	
	38	38	1	M2020-3514-1-A M2020-3514-1-B M2020-3575-1-A M2020-3575-1-B	Pallor			038F3801			4	
	39	39	1	M2020-3575-1-A	a 9/1012	N.		039F3901			4	
	40	40	1	M2020-3575-1-B	· ' -			040F4001			4	£
	41	41	1	M2020-3518-1-A	-			041F4101			4	1
	42	42	1	M2020-3518-1-B	-			042F4201			4	V
	43	43	1	P2020-2620-2-A	-		1.0000	043F4301	.D		4	

	Location	_	Sample Name	_	_	File name	Cal #
#		. # .		[g/100cc]	Dilution		Cmp
44	44	1	P2020-2620-2-B	-	1.0000	044F4401.D	4
45	45	1	P2020-2628-1-A	-	1.0000	045F4501.D	4
46	46	1	P2020-2628-1-B	-	1.0000	046F4601.D	4
47	47	1	QC1-2-A	-	1.0000	047F4701.D	4
48	48	1	QC1-2-B	-	1.0000	048F4801.D	4
49	49	1	P2020-2634-1-A	-	1.0000	049F4901.D	4
50	50	1	P2020-2634-1-B	-	1.0000	050F5001.D	5
51	51	1	P2020-2642-1-A	-	1.0000	051F5101.D	2
52	52	1	P2020-2642-1-B	-	1.0000	052F5201.D	2
53	53	1	P2020-2657-1-A	-	1.0000	053F5301.D	4
54	54	1	P2020-2657-1-B	-	1.0000	054F5401.D	4
55	55	1	P2020-2660-1-A	-	1.0000	055F5501.D	4
56	56	1	P2020-2660-1-B	-	1.0000	056F5601.D	4
57	57	1	QC2-2-A	-	1.0000	057F5701.D	4
58	58	1	QC2-2-B	-	1.0000	058F5801.D	4
59	59	1	INTERNAL STD BLK	-	1.0000	059F5901.D	2

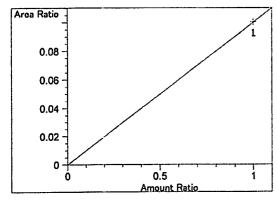
Method file name: C:\Chem32\1\Data\09-09-20_SAMPLES\09-09-20_SAMPLES 2020-09-09 16-25-29 \SHUTDOWN.M

Run	Location	Inj	Sample Name	Sample Amt	Multip.*	File name	Cal	#
#		#		[g/100cc]				Cmp
	60					060F6001.D		0

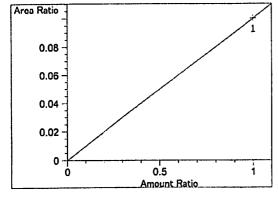
NB

	libration Table
General	Calibration Setting
	Thursday, September 03, 2020 2:25:10 PM
Signals calculated separately	y: No
	0.000 %
Abs. Reference Window:	0.100 min
Rel. Non-ref. Window :	0.000 %
Abs. Non-ref. Window :	0.100 min
Uncalibrated Peaks :	
	Yes, identified peaks are recalibrated
Correct All Ret. Times:	No, only for identified peaks
Curve Type :	Linear
Origin :	
Weight :	Equal
Recalibration Settings:	
Average Response : Average Retention Time:	Average all calibrations
Average Retention Time:	Floating Average New 75%
Calibration Report Options: Printout of recalibration Calibration Table aft Normal Report after I If the sequence is done to Results of first cycle	ter Recalibration Recalibration
ISTD ISTD Amount Name # [g/100cc]	ion (if not set in sample table):
1 1.00000 n-propano	
1 1.00000 n-propano 2 1.00000 n-propano]
2 accessor in propulse.	
	ignal Details
	-y.m.
Signal 1: FID1 A, Front Signal Signal 2: FID2 B, Back Signal	1
Ot	verview Table

```
RT Sig Lvl Amount
                       Area
                             Rsp.Factor Ref ISTD # Compound
             [g/100cc]
2.586 1 1
            1.00000
                       3.69669 2.70512e-1 No No 1 methanol
                       4.26100 2.34687e-1 No No 2 Acetaldehyde
 2.809 1 1
             1.00000
 2.977 2 1
             1.00000
                      4.26100 2.34687e-1 No No 2 Acetaldehyde
 3.075 1 1 5.00000e-2
                      4.35949 1.14692e-2 No No 1 ethanol
         2 1.00000e-1
                      8.76935 1.14034e-2
         3 2.00000e-1 17.73212 1.12790e-2
         4 3.00000e-1 26.66915 1.12490e-2
         5 5.00000e-1 43.90200 1.13890e-2
           1.00000
                      4.26062 2.34707e-1 No No 2 methanol
 3.388 2 1
             1.00000
                      9.73055 1.02769e-1 No No 1 isopropyl alcohol
 3.628 1 1
                      4.55851 1.09685e-2 No No 2 ethanol
 4.285 2 1 5.00000e-2
         2 1.00000e-1
                      9.04151 1.10601e-2
         3 2.00000e-1 18.39215 1.08742e-2
         4 3.00000e-1
                      27.80130 1.07909e-2
         5 5.00000e-1
                      46.19029 1.08248e-2
 4.308 1 1
             1.00000
                      6.49940 1.53860e-1 No No 1 acetone
 4.620 1 1
             1.00000 40.85903 2.44744e-2 No Yes 1 n-propanol
         2
             1.00000 40.98506 2.43991e-2
             1.00000 40.87630 2.44641e-2
         3
         4
             1.00000
                      41.02362 2.43762e-2
         5
            1.00000 40.09966 2.49379e-2
            1.00000
                      6.89301 1.45075e-1 No No 2 acetone
 4.661 2 1
            1.00000 10.70642 9.34019e-2 No No 2 isopropyl alcohol
 4.969 2 1
            1.00000 42.51776 2.35196e-2 No Yes 2 n-propanol
 7.550 2 1
         2
             1.00000 42.22186 2.36844e-2
             1.00000 41.86564 2.38859e-2
         3
         4
             1.00000 41.85574 2.38916e-2
             1.00000
                      40.71259 2.45624e-2
         5
                       Peak Sum Table
***No Entries in table***
```


1 Warnings or Errors :

Warning : Curve requires more calibration points., (methanol)


Calibration Curves

Area Ratio E 80.0 0.07 0.08 0.05 0.04 0.03 0.02 0.01 0 0.5 Amount Ratio

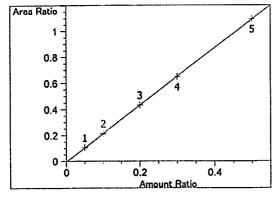
methanol at exp. RT: 2.586 FID1 A, Front Signal Correlation: 1.00000 Residual Std. Dev.: 0.00000 Formula: y = mx + b9.04744e-2 m: 0.00000 b: x: Amount Ratio y: Area Ratio

Acetaldehyde at exp. RT: 2.809
FID1 A, Front Signal
Correlation: 1.00000
Residual Std. Dev.: 0.00000
Formula: y = mx + b
m: 1.00217e-1
b: 0.00000
x: Amount Ratio
y: Area Ratio

Acetaldehyde at exp. RT: 2.977

FID2 B, Back Signal

Correlation: 1.00000


Residual Std. Dev.: 0.00000

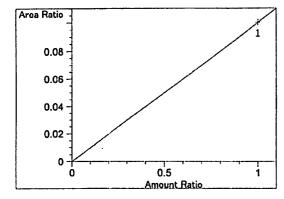
Formula: y = mx + b

m: 1.00217e-1

b: 0.00000

x: Amount Ratio
y: Area Ratio

ethanol at exp. RT: 3.075


FID1 A, Front Signal

Correlation: 0.99998

Residual Std. Dev.: 0.00265

Formula: y = mx + b

m: 2.19589
b: -5.17961e-3
x: Amount Ratio
y: Area Ratio

methanol at exp. RT: 3.388

FID2 B, Back Signal

Correlation: 1.00000

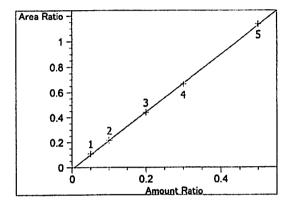
Residual Std. Dev.: 0.00000

Formula: y = mx + b

m: 1.00208e-1

b: 0.00000

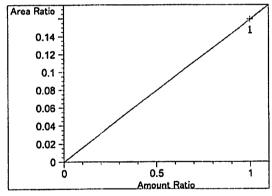
x: Amount Ratio
y: Area Ratio



isopropyl alcohol at exp. RT: 3.628 FID1 A, Front Signal Correlation: 1.00000

Residual Std. Dev.: 0.00000

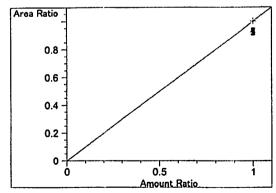
Formula: y = mx + b m: 2.38149e-1 b: 0.00000


> x: Amount Ratio y: Area Ratio

ethanol at exp. RT: 4.285 FID2 B, Back Signal

Correlation: 0.99989
Residual Std. Dev.: 0.00710

Formula: y = mx + b m: 2.28520 b: -1.37099e-2 x: Amount Ratio y: Area Ratio


acetone at exp. RT: 4.308

FID1 A, Front Signal

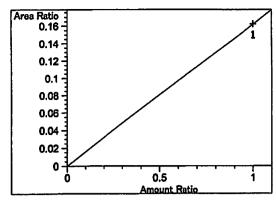
Correlation: 1.00000 Residual Std. Dev.: 0.00000

Formula: y = mx + b

m: 1.59069e-1 b: 0.00000 x: Amount Ratio y: Area Ratio

n-propanol at exp. RT: 4.620 FID1 A, Front Signal

Correlation: 1.00000


Residual Std. Dev.: 0.00000

Formula: y = mx + b

m: 1.00000 b: 0.00000

b: 0.00000 x: Amount Ratio

y: Area Ratio



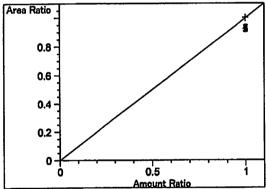
acetone at exp. RT: 4.661
FID2 B, Back Signal

Correlation: 1.00000 Residual Std. Dev.: 0.00000

Formula: y = mx + b m: 1.62121e-1 b: 0.00000

> x: Amount Ratio y: Area Ratio

isopropyl alcohol at exp. RT: 4.969


FID2 B, Back Signal

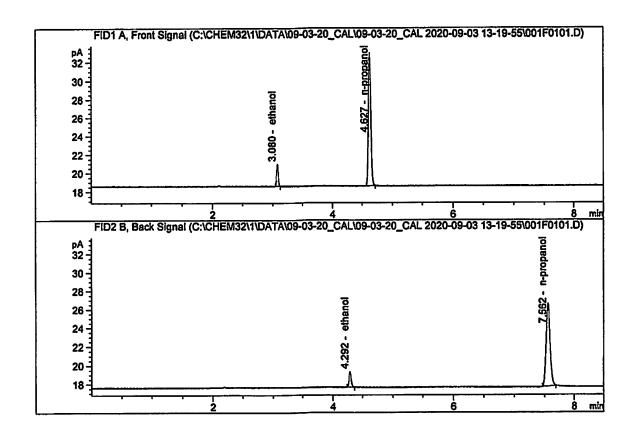
Correlation: 1.00000
Residual Std. Dev.: 0.00000

Formula: y = mx + b

m: 2.51810e-1 b: 0.00000 x: Amount Ratio

y: Area Ratio

n-propanol at exp. RT: 7.550

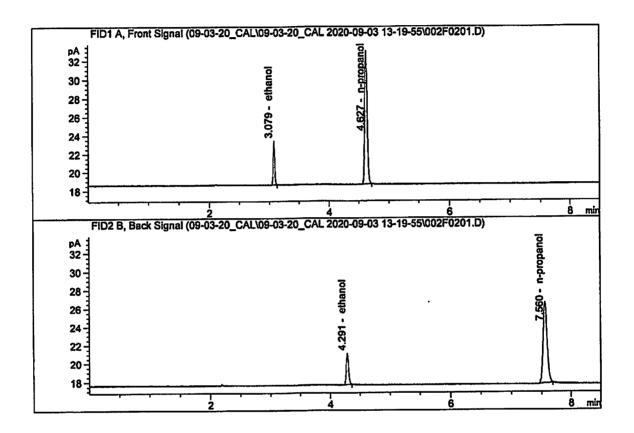

FID2 B, Back Signal

Correlation: 1.00000
Residual Std. Dev.: 0.00000

Formula: y = mx + b
m: 1.00000
b: 0.00000
x: Amount Ratio
y: Area Ratio

Sample Name : 0.050 FN05211804

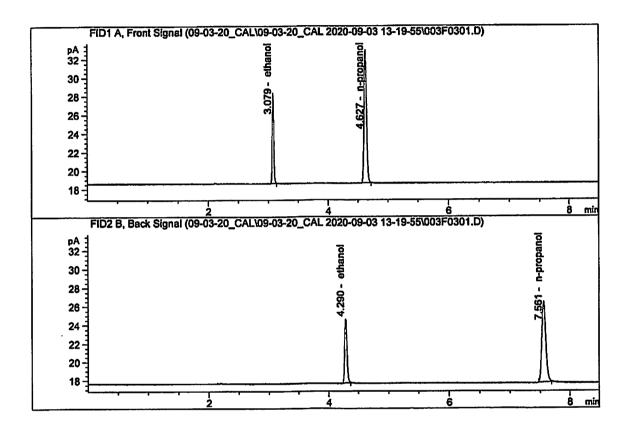
Laboratory : Meridian
Injection Date : Sep 3, 2020
Method : ALCOHOL.M



#	Compound	Column	Area	Amount	Units
1.	Ethanol	Column 1:	4.35949	0.0509	g/100cc
2.	Ethanol	Column 2:	4.55851	0.0529	g/100cc
З.	n-Propanol	Column 1:	40.85903	1.0000	g/100cc
4.	n-Propanol	Column 2:	42.51776	1.0000	g/100cc

Sample Name : 0.100 FN02271802

Laboratory : Meridian
Injection Date : Sep 3, 2020
Method : ALCOHOL.M



#	Compound	Column	Area	Amount	Units
1.	Ethanol	Column 1:	8.76935	0.0998	g/100cc
2.	Ethanol	Column 2:	9.04151	0.0997	g/100cc
3.	n-Propanol	Column 1:	40.98506	1.0000	g/100cc
4.	n-Propanol	Column 2:	42.22186	1.0000	g/100cc

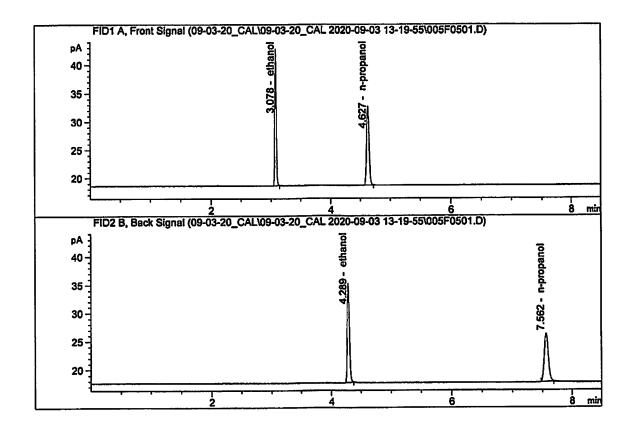
Sample Name : 0.200 FN06231704

Laboratory : Meridian
Injection Date : Sep 3, 2020
Method : ALCOHOL.M

#	Compound	Column	Area	Amount	Units
1.	Ethanol	Column 1:	17.73212	0.1999	g/100cc
2.	Ethanol	Column 2:	18.39215	0.1982	g/100cc
3.	n-Propanol	Column 1:	40.87630	1.0000	g/100cc
4.	n-Propanol	Column 2:	41.86564	1.0000	g/100cc

Sample Name : 0.300 FN07311804

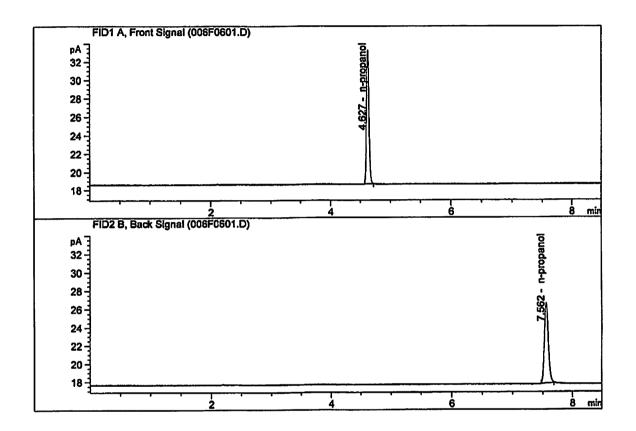
Laboratory : Meridian
Injection Date : Sep 3, 2020
Method : ALCOHOL.M



#	Compound	Column	Area	Amount	Units
2.	Ethanol Ethanol n-Propanol n-Propanol	Column 1: Column 2: Column 1: Column 2:	26.66915 27.80130 41.02362 41.85574	0.2984 0.2967 1.0000	g/100cc g/100cc g/100cc g/100cc

Sample Name : 0.500 FN08241801

Laboratory : Meridian
Injection Date : Sep 3, 2020
Method : ALCOHOL.M



#	Compound	Column	Area	Amount	Units
2. 3.	Ethanol Ethanol n-Propanol n-Propanol	Column 1: Column 2: Column 1: Column 2:	43.90200 46.19029 40.09966 40.71259	0.5009 0.5025 1.0000	g/100cc g/100cc g/100cc g/100cc

Sample Name : INTERNAL STANDARD BLANK

Laboratory : Meridian
Injection Date : Sep 3, 2020
Method : ALCOHOL.M

#	Compound	Column	Area	Amount	Units
1.	Ethanol	Column 1:	0.00000	0.0000	g/100cc
2.	Ethanol	Column 2:	0.00000	0.0000	g/100cc
З.	n-Propanol	Column 1:	41.64092	1.0000	g/100cc
4.	n-Propanol	Column 2:	42.48873	1.0000	g/100cc

sample Summary

Sequence table: C:\Chem32\1\Data\09-03-20_CAL\09-03-20_CAL 2020-09-03 13-19-55\09-03-20_

CAL.S

Data directory path: C:\Chem32\1\Data\09-03-20_CAL\09-03-20_CAL 2020-09-03 13-19-55\

Logbook: C:\Chem32\1\Data\09-03-20_CAL\09-03-20_CAL 2020-09-03 13-19-55\09-03-20_

CAL.LOG

Sequence start: 9/3/2020 1:34:35 PM

Sequence Operator: SYSTEM Operator: SYSTEM

Method file name: C:\Chem32\1\Data\09-03-20_CAL\09-03-20_CAL 2020-09-03 13-19-55\ALCOHOL.M

Run #	Location	Inj #	Sample Name	Sample Amt [g/100cc]	Multip.* Dilution	File name	Cal	# Cmp
1	' 1	1	0.050 FN05211804	-	1.0000	001F0101.D	*	4
2	2	1	0.100 FN02271802	-	1.0000	002F0201.D	*	4
3	3	1	0.200 FN06231704	-	1.0000	003F0301.D	*	4
4	4	1	0.300 FN07311804	-	1.0000	004F0401.D	*	4
5	5	1	0.500 FN08241801	-	1.0000	005F0501.D	*	4
6	6	1	INTERNAL STANDAR	-	1.0000	006F0601.D		2

